MLDL_정리/Sample

DL - 오차역전파법을 이용한 확률 분포

KimTory 2022. 2. 5. 00:47
import sys, os
sys.path.append(os.pardir)  # 부모 디렉터리의 파일을 가져올 수 있도록 설정
import numpy as np
from common.layers import *
from common.gradient import numerical_gradient
from collections import OrderedDict

class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01):
        # 가중치 초기화
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) 
        self.params['b2'] = np.zeros(output_size)

        # 계층 생성
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])

        self.lastLayer = SoftmaxWithLoss()
        
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        
        return x
        
    # x : 입력 데이터, t : 정답 레이블
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
    # x : 입력 데이터, t : 정답 레이블
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)
        
        grads = {}
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
        
        return grads
        
    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 결과 저장
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads

 

→ 0번째 학습 , 50번째 학습, 100번째 학습...50의 배수로 학습 분포 체크

# coding: utf-8
import sys, os
sys.path.append(os.pardir)

import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from two_layer_net import TwoLayerNet
from common.functions import *

# 데이터 읽기
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)

# test 1개 저장
# [0]은 7이라는 형태의 data(image) 존재
sample=x_test[0]

plt.figure()
plt.imshow(sample.reshape(28,28), cmap=plt.cm.binary)
plt.xticks([])
plt.yticks([])
plt.show()

network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

iters_num = 1000
# 학습 진행한 횟수
eval_interval=50
train_size = x_train.shape[0]
print(train_size)
batch_size = 100
learning_rate = 0.1

iter_per_epoch = max(train_size / batch_size, 1)

plt.figure(figsize=(10,10))

for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    
    # 기울기 계산
    #grad = network.numerical_gradient(x_batch, t_batch) # 수치 미분 방식
    grad = network.gradient(x_batch, t_batch) # 오차역전파법 방식(훨씬 빠름)
    
    # 갱신
    for key in ('W1', 'b1', 'W2', 'b2'):
        network.params[key] -= learning_rate * grad[key]
        # 고도가 낮아지면서 크로스 앤트로피가 낮아지므로
        # 네트워크의 성능이 높아짐

    # 학습 횟수가 0 , 50, 100 ... 50의 배수로 진행하게 끔 조건문 추가
    if (i % eval_interval == 0) & ((i//eval_interval)<16):
        probability=softmax(network.predict(sample.reshape(1,784))) # predict는 softmax 전, score 출력
        # 확률 분포
        print(probability)
        # 4 x 4 
        plt.subplot(4,4,int((i//eval_interval)+1))
        plt.bar(range(len(probability[0])),probability[0])
        plt.ylim(0, 1.0)

plt.show()

 

 

Softmax 전 / score 출력 → 7번째 확률 분포가 제일 높음

 

sample image

 

7번째 확률 분포가 제일 높음 / 정답 예측함