PDF(Probability Density Function, 확률 밀도 함수) : 연속적인 변수에 의한 확률 분포 함수를 의미한다. 특정 확률 변수 구간의 확률이 다른 구간에 비해 상대적으로 얼마나 높은가를 나타내는 것이며, 그 값 자체가 확률은 아니다. 분포내에서 특정한 한 값에서의 확률은 0 이다. P (X = a) = 0 아래와 같은 두가지 특징이 있다. 1) 항상 양의 값을 가져야 한다. 2) 모든 범위의 PDF 를 합하면 그 값은 1이다. 정의된 범위 내에서의 확률은 범위내의 pdf 영역 넓이(적분값)가 된다. CDF(Cumulative Distribution Function, 누적 분포 함수) : 어떤 확률 분포에 대해서 확률 변수가 특정 값보다 작거나 같은 확률을 나타낸다. PDF 와 CDF..